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Abstract—Weakly supervised methods can train highly ef-
fective machine learning models for computer security, even
when benign labels for data are entirely missing. Typically,
computer security data only contains labels for the “bad stuff”
(malware, botnet domains), whereas labels for the “good stuff”
are either missing entirely, or only cover trivial cases (Microsoft
software, Alexa Top 1 Million Domains). The standard supervised
classification approach requires all samples to have a label.
However, it can be very expensive and time-consuming to obtain a
large, diverse sample benign labels. Using two publicly-available
datasets, EMBER and Namgung’s DGA corpus, we show that
weakly-supervised learning methods out-perform conventional
supervised learning when one class is unlabeled (a mix of positive
and negative data in some unknown proportion). Moreover, we
show that applying conventional supervised learning approaches
to unlabeled data creates a “backdoor” in the machine learning
model. We show that the weakly-supervised learning approach
minimizes this vulnerability.

Index Terms—computer security, neural networks

I. INTRODUCTION

This paper proposes that benign labels are not actually
required to construct state-of-the-art machine learning
models in computer security contexts. Instead, advances
in positive-unlabeled (PU) learning allow researchers to use
unlabeled data (presumed to be a mix of benign and malicious
data) to create robust and reliable machine learning models.

We demonstrate the effectiveness of PU learning methods
on two different computer security datasets. Our experiments
show the effectiveness of PU learning methods directly by
comparing models trained using a specific PU learning method
to ordinary positive negative models which do not account
for the semantic uncertainty inherent in unlabeled data. We
construct synthetic positive-unlabeled datasets from real-world
security data, and show that the chosen PU learning method
produces high-quality models.

The paper proceeds as follows. Section II gives background
on how the PU learning problem arises in the computer
security setting. Section III gives a brief overview of related
work and outlines (TED)n, our chosen PU learning method.
Section describes the two datasets used in this research, one
for malicious domain names and one for malicious software.
Section V describes the experiments and their results. Section
VI discusses the results and directions for future work and
Section VII concludes.

II. BACKGROUND

This paper is partially inspired by a pattern we observed at
CAMLIS 2023. Each and every CAMLIS 2023 talk invariably
contained an aside to the effect of “...but as we all know,
it’s impossible to get labels for the benign data, so we had
to improvise” and then the speaker would explain an ad hoc

method or heuristic for labeling a large amount of data as
(likely) benign. Then the speakers would apply a conventional
positive-negative (PN) machine learning method to the known
malicious and putatively benign data.

Let’s take a step back and set the stage for supervised ma-
chine learning in computer security. The defining assumption
of supervised learning is that you have some objects and all
of those objects have labels, and you want to build a model to
assign the correct labels to as-yet-unseen objects. In computer
security, these objects could be portable executable software,
domain strings, abstract syntax trees, network packets, API
calls, or other relevant computer security data. The labels are
semantic categories; typically, these labels are simple binary
categories, e.g. “benign” or “malicious.” Experts review the
unlabeled objects to determine if they’re malicious or not, but
this process is time-consuming and expensive. Accordingly,
computer security researchers frequently have datasets com-
prised of a small number of labeled samples examples on the
one hand, and an enormous volume of unlabeled data on the
other.

That said, malicious labels in particular are often widely
available from threat feed subscriptions and similar services
(e.g. VirusTotal or Hybrid Analysis for PE files, and Recorded
Future or InfraGuard for Internet domains). However, the cov-
erage of these services will always be incomplete. Moreover,
the most effective adversaries will be very careful to evade
detection. Thus, the fact that a PE file or domain name in
a threat feed has not been labeled as malicious is not the
same as positive proof that the domain is benign. It could
simply be the case that its maliciousness has not yet been
detected. In this way, even threat feeds, which are often seen
as an authoritative resource for label in cybersecurity datasets,
should be understood as source of PU labels, rather than PN
labels.

Naturally, expense of obtaining labels leads researchers to
consider expeditious alternatives. So researchers seek some
short-cuts, such as using heuristics, business rules or other
imperfect substitutes for expert review. An alternative short-
cut is to simply train a biased PN classifier, which ignores
unlabeled data problem and simply treats the unlabeled data
as negatives. Naturally, this is a suboptimal solution. In this
paper, we quantify the extent of that bias.

But both of these approaches – heuristic labels and training
a biased model – are is inherently unsatisfying, because the
simplifying assumptions that underpin them become founda-
tional components of the model. Any errors or sampling bias
that these heuristics incur will distort the resulting model.
These errors could cause the model to misclassify a malicious
event as benign or vice versa. In effect, heuristic labeling



can create systematic security holes in the resulting model
which originate in the labeling process itself. In the worst-
case, the model may only learn to faithfully reproduce the
rules or heuristics used to label the data as “benign,” leaving
an exploitable backdoor for any malicious activity that deviates
from the heuristics used to curate the benign data.

By contrast, PU learning methods take a huge step forward
for machine learning in computer security. Weakly supervised
methods can train highly effective binary classifiers, even
though reliable labels for one of the classes are entirely
missing. PU learning does this by taking advantage of the
enormous volume of unlabeled data (presumably a mix of
malicious and benign in some unknown proportion) that com-
puter security practitioners are often able to passively collect.

This paper will show the results of applying (TED)n [1], an
off-the-shelf PU learning method, to two different computer
security problems using publicly available datasets. The first
is malware classification using the EMBER dataset [2]. The
second is malicious domain detection, comparing malicious
domains produced by domain generation algorithms (DGA) to
benign domains (obtained from the Alexa Top Domains list)
[3].

Both datasets include a large quantity of labeled, benign
data. This is allows us to simulate unlabeled data in a
controlled fashion. We simply remove all the labels from the
benign data and some fraction of the malicious data to create
unlabeled data. Our experiments show that the PU learning
models perform better the biased PN models when trained on
the same data.

Finally, the EMBER dataset also includes some unlabeled
data. We simulate a dataset with a large portion of unlabeled
data by treating all benign data and all unlabeled data as if
they are unlabeled. We show that the (TED)n classifier trained
using this large set of unlabeled data is more effective than
biased classifier that naı̈vely treats all unlabeled data as if it
were the negative class.

III. RELATED WORK & PU LEARNING

Moving beyond the case of traditional classifiers, where
all samples have labels, one encounters a variety of different
“weakly supervised” paradigms, so named in contrast to
the traditional “strongly supervised” approach. These weakly
supervised methods include semi-supervised learning (where
one has positive labels, negative labels and unlabeled data),
noisy labels (where the data’s labels are sometimes incorrect),
unlabeled learning (where there are no labels at all), and
complementary labels (where the label tells you what an object
isn’t, but not what it is). Examples of methods for all of these
scenarios appear in [4].

Despite its broad applicability to computer security prob-
lems, there is not an enormous literature base applying
positive-unlabeled learning in this setting. Based on Google
Scholar results for academic publications that cite Garg et al.,
we believe that this paper is the first research to apply the
(TED)n method to cybersecurity data. Likewise, this paper is
also the first to apply positive-unlabeled learning methods to

either Namgung et al.’s DGA dataset or Anderson & Roth’s
EMBER dataset. Moreover, because these datasets are fully
labeled, we can evaluate their true PN performance in a
controlled manner, and study the models’ performance as we
vary the proportion of unlabeled data.

In general, there is some literature applying various PU
methods to computer security problems. Regarding PU learn-
ing for malware, in [5] the authors propose a cost-sensitive
boosting method. And [6] ensembles some cost-sensitive sev-
eral classifier types for the same purpose. As a framework,
cost-sensitive learning and reweighted losses feature promi-
nently in the PU literature; a number of similar concepts
appear in [4]. In the context of DGA, an example is [7], which
introduces a novel PU learning method particularized to the
unique dataset used in the paper.

The widely-used nnPU method has also been applied to
computer intrusion detection [8].

In this paper, we adopt the (TED)n method of Garg et
al. Even though this method has limitations in its theoretical
guarantees, we nonetheless adopt this method because it
compares favorably to the other methods which we reviewed.
The wide variety of methods surveyed in [9] depend on
unrealistic assumptions about the data, exhiibit sensitivity to
hyper-parameters, or lack theoretical guarantees. Similarly,
the kernel-based methods outlined in [4] have theoretical
guarantees, but kernel matrices do not scale favorably to
large datasets, and the methods depend crucially on hyper-
parameters for which tuning is impossible.

Finally, the Garg et al. paper shows that (TED)n compares
favorably to the nnPU method. The nnPU method proposed in
[10], has a strong theoretical basis, does not have any hyper-
parameters, is widely used, and it is often selected as a default
method for PU learning tasks. However, nnPU requires one to
know or obtain an mixture proportion estimate, which is not
a trivial task. Moreover, Garg et al. show that nnPU tends to
under-fit relative to (TED)n, which is undesirable.

(TED)n is composed of two parts. The first part, best
bin estimation (BBE), is used to estimate the proportion of
positive samples among the unlabeled data. The second part,
conditional value ignoring risk (CVIR), is a method to estimate
a classifier from the positive-unlabeled data in a way that has
lower bias than a model that naı̈vely treats the unlabeled data
as negative data. Specifically, (TED)n trains a biased binary
classifier for 0 or more iterations, then computes the mixture
proportion estimate using BBE applied to a held-out partition
of the data, then removes the unlabeled samples with the
greatest propensity to be positives from the training data, then
trains a biased classifier for another iteration on the filtered
data; this process is repeated until the training error converges.
In combination, the method is able to simultaneously estimate
the mixture proportion and use that estimate to train a classifier
by discarding the fraction of the unlabeled training data that
are most likely to be positive.

The (TED)n method is entirely agnostic to the nature of the
classifier, requiring only that you can compute a loss value for
each observation; therefore, (TED)n method can accommodate



data with many observations or features whenever the cho-
sen machine learning model can. Finally, while the (TED)n

method does have a single hyper-parameter that’s used to
estimate the mixture proportion, our results do not vary much
when it is adjusted. (We simply set is value to 0 in these
experiments.)

With respect to theoretical guarantees, (TED)n’s BBE
method makes only modest assumptions about the data itself.
The authors term this assumption the “pure positive bin”
property, and it describes the case where that there is a
threshold where only positive samples have model predic-
tions larger than that threshold; moreover, this requirement
can be relaxed with the introduction of a hyper-parameter.
The authors provide theoretical guarantees that the mixture
proportion estimator will be close to the true proportion with
high probability.

On the other hand, the authors do not provide theoretical
guarantees for the CVIR method. Using the estimate of the
proportion of positives among the unlabeled data, the CVIR
method discards that same fraction of the unlabeled data that
the model predicts as most likely to be positive. It is intuitive
why the CVIR method might work – if the model has an
ability to differentiate among positives and negatives, then
the unlabeled data that the model ranks as most likely to be
positive will have the largest proportion of positives among
them, and removing those samples implies that the remaining
samples are largely negatives. That said, we would prefer some
formal evidence that the improvement in model quality that
we derive from omitting some of the positives among the
unlabeled is greater than the degradation in model quality
that comes from the model mislabeling some negatives and
removing them. In a worst case, one can imagine a self-
reinforcing scenario arising where the data removed from the
training set causes the BBE method to become biased upwards,
so that CVIR removes even more negatives from the unlabeled
data, which worsens the quality of the BBE method, repeating
ad nauseam.

We contrast (TED)n to the biased PN classifier, which treats
the unlabeled data as if it were actually all negative data. This
is the simplest approach to training a machine learning model
in the PU setting, because it simply ignores the core problem.
However, the obvious flaw with this approach is that the model
is more likely to misclassify test-time positive samples that
are similar to one or more of the positive samples among the
unlabeled data. We term these models “biased classifiers” for
this reason. The extent of this bias will be greater or lesser
depending on the proportion of positive samples among the
unlabeled data.

IV. DATASETS

To demonstrate the generality of our chosen PU learn-
ing method to computer security applications, we apply the
method to two datasets reflecting two distinct computer se-
curity problems. The first a corpus of domain strings labeled
according to which malware family produced the string [3].
The second is EMBER, a corpus of portable executable (PE)

files which are labeled as malicious, benign, or are unlabeled
[2]. Both datasets are publicly available in Github repositories
maintained by their respective authors.

These datasets are not without limitations. Both datasets are
somewhat old. Namgung et al. compiled their dataset prior
to 2021, and EMBER was last updated in 2018. Their age
doesn’t particularly matter for this paper’s experiments, which
are solely about the relative efficacy of PU learning, but would
matter a great deal if a person were to attempt to use the
models developed in this paper as a security product.

Additionally, both of these datasets are considered small
by the standards of industrial computer security. In our pro-
fessional work, a typical dataset is composed of hundreds
of millions or even billions of observations. We state this to
underscore the enormous burden of obtaining reliable labels
of computer security artifacts at this scale, and highlight the
role that PU learning plays in lessening that burden.

Comparing the two tasks, we anticipate that malware classi-
fication will be more challenging than DGA detection. This is
because DGA domains are characterized by their length and
highly random, “keyboard smash” appearance. By contrast,
legitimate websites tend to use memorable words or short
phrases as domain names. In particular, the models we use
in this paper take the 3-grams of the domain as the input,
so the model’s task is simplified to assessing whether all of
the 3-grams in combination look like more random strings or
words.

By contrast, PE files are binary files that have a rich
structure and can be obfuscated in various ways to defeat
security professionals attempts to detect them. Even detonating
suspected malware is not foolproof, because malware authors
can include techniques to detect if the program is operating
inside of a sandbox and alter is behavior accordingly.

A. Namgung’s DGA Dataset

In computer security, malware authors often use DNS as
a covert communications channel [11]. In a typical scenario,
the malware author wishes to send instructions to or receive
data from a compute that has been infected with the au-
thor’s malware. Malware authors do not simply use an IP
address coded into the malware for this traffic because it
is fragile: blocking the IP address (e.g. via firewall) stops
the communication. And authors do not use a single, pre-
defined domain string for the same reason. Instead, malware
authors will use some algorithmic method to procedurally
and dynamically choose a domain string from among an
enormous pool of possible domain strings. These are called
domain-generation algorithms (DGA). The goal is to make
it more challenging for security professionals to block this
traffic because enumerating all possible domain names for
that specific malware is challenging, and the malware author
has the luxury of choosing which domains among the pool
of possible domains that they wish to use for command and
control of the malware.

Namgung et al.’s dataset of benign and DGA domains was
collected with the intent of training a multi-class classifier to



distinguish among different families of DGA domains [3]. The
dataset is composed of 832,271 DGA samples and 603,387
benign domains. There is not an explicit test dataset, so we
evaluate test-set metrics by using 5-fold cross-validation. In
the present setting, we will use this dataset to build a binary
classifier, collapsing all of the domains from different malware
families into a single, positive class.

One limitation of Namgung et al.’s dataset is that its
examples of benign domains are drawn from Amazon’s Alexa
Top One Million domain list. I’ve discussed the limitations of
this approach elsewhere [12], but I’ll briefly recap them here.

The main problem with using the most popular domain
names as the negative set is that these domains are not likely
to be at all similar to the types of domains to which one
will be applying the machine learning model in the future.
Alexa domains tend to be short, memorable, and often English-
language dictionary words. There are hardly any punycode
domains among them.1 Moreover, the concept of “top domain”
embodied in the Alexa list is limited solely to the domain
names typed into a browser by users who have installed the
Alexa extension. This leaves out the large volume of internet
traffic that is not submitted to the address bar of a web
browser (examples include e-mail clients, mobile social media
applications, and internet-connected games).

Moreover, if the goal of the machine learning method
is simply to not block popular domains (vice identifying
malicious domains), one can do that with a whitelist without
any need for machine learning. With this in mind, the real
challenge of building an industrial protective DNS solution
is that one will need to correctly handle traffic to obscure
and newly-registered domains, and these domains may be
markedly different from the most popular domains.

B. Anderson & Roth’s EMBER Dataset

Our second computer security challenge is detecting ma-
licious software (malware). Malware can take many forms,
from key-loggers to trojans. Ransomware, which holds an
organization’s computers hostage until they pay the ransom, is
the most prominent contemporary example [13].2 Inspecting
a portable executable (PE) file for evidence that it may be
malware is a standard feature of an antivirus solution or an
endpoint security product. Anderson & Roth compiled the
EMBER dataset as a way to create a common benchmark
dataset for detecting PE malware, much in the same way
that CIFAR and ImageNet datasets are widely used in the
computer vision literature.

1The DNS standard requires all domains to be written in ASCII characters.
Punycode is an encoding scheme that allows any UTF-8 character to be
represented using ASCII. This is necessary to correctly display domains in
languages that use non-ASCII characters, but “under the hood” the domain
name is an ASCII string. For example, the domain gøögłê.com is encoded as
xn--gg-fja0cj06b.com.

2The report discusses ransomware as a part of the threat landscape through-
out, but the most conclusive statement of ransomware’s future prospects can be
found in this quotation “Though CrowdStrike CAO assesses that ransomware
will highly likely remain the primary extortion method through 2024, [big
game hunting] adversaries will increasingly emphasize stolen-data exploitation
as a means to pressure victims into payment.”

As part of the same project, Anderson & Roth also released
software named EMBER, which is a feature extraction engine
that transforms a PE file into a vector representation sum-
marizing it. This is an important step because interpreting a
binary composed of thousands or millions of bytes requires
knowledge of which attributes are useful to measure from a
security standpoint, and is the cornerstone for how a machine
learning algorithm will make its risk assessments.

Though the EMBER dataset and feature extraction engine are
both somewhat dated (the latest version was released in 2018),
it remains one of the only open datasets of PE software and
open source feature-extraction engines.3 The dataset contains
1.1 million PE files, and is partitioned into a training dataset
(300,000 malicious, 300,000 benign and 300,000 unlabeled)
and a test dataset (100,000 malicious and 100,000 benign).

V. EXPERIMENTS & RESULTS

In these experiments, we compare the effectiveness of the
(TED)n procedure and a biased PN model trained on the same
dataset, using the same models. The first two experiments
simulate varying levels of mixture proportions among the un-
labeled data by simulating unlabeled data. The first experiment
does this for the DGA data, and the second for the EMBER
corpus. We simulate unlabled data by removing a random
portion of the positive samples from the positive set and adding
them to the negative set, which we treat as unlabeled. A side-
effect of this simulation is increasing the size of the unlabeled
set decreases the size of the positive set and vice-versa. The
proportion of positives so relabeled varies from 5% to 55%
in increments of 5% (implying that the proportion of positives
among the unlabeled set varies between roughly 4% and 35%).
This simulation allows us to assess the accuracy of the mixture
proportion estimates, as well as how changing the value of the
mixture proportion influences the efficacy of either training
method.

The third experiment utilizes the unlabeled data from the
EMBER corpus to directly compare the PU and biased learning
scenarios. We do this by combining the negative class and
the unlabeled data into a single unlabeled class and then
applying the (TED)n method. This experiment is closer to
a real-world scenario where the true mixture proportion is
unknown, because we are using data which is truly unlabeled
we do not have any mechanism to monitor the efficacy of the
(TED)n method during training.

In all cases, we report performance metrics on the test set.
As a benchmark, we also report results for the traditional PN
models trained without any augmentations made to their labels.
These benchmark models characterize the “best case” scenario
when one is blessed with a large, labeled dataset that does
not reflect any label scarcity, labeling errors, nor inclusion of
unlabeled data.

3Due to its age, we are forced to make two minor modifications to the
feature extraction engine in order for it to work. The first is to increment the
lief library (a free utility for parsing PE files) from 0.9 to 0.13. The second
is fixing a bug that arises how recent versions of python handle computing the
hash of an iterable. This bug is issue number 103 on the Github for EMBER.
Both of these changes may alter the computed feature values.



Fig. 1. Test-set metrics for experiment 1.

In all cases, the model architectures and model hyper-
parameters are identical for the benchmark models and ex-
periments comparing PU learning and biased PN learning.
Full model details are presented in appendix A. Consequently,
the only experimental variable is the training method used
(either (TED)n or a biased classifier). We measure four test-
set metrics: Brier score, error rate, cross-entropy, and trimmed
cross-entropy.4

Finally, statistical results are presented in appendix B.

A. Experiment 1: DGA Detection (simulating unlabeled data)

The purpose of Experiment 1 is to test whether applying
the (TED)n method to PU data for DGA domains produces
a superior model compared to the naı̈ve method which treats
unlabeled data as if it were negative data.

As a model, we use a feedforward multi-layer perceptron
with residual connections. This network is essentially a tabular
analogue composed of the residual blocks in [14]. The input
to the model is the 3-grams of the reversed domain string.
Reversing the domain string maintains adjacency of consec-
utive characters while enforcing that the top level domain
(e.g. ‘.com’) appears in a consistent location of the input,
even when domains have varying lengths, and yields a modest
improvement to the model.

Figure 1 displays the results of Experiment 1. For each
metric, a lower value indicates that the model is superior to a
model with a higher value. The dashed horizontal lines indicate
the “gold standard” benchmark for the PN classifier trained
with perfect label information (no unlabeled data).5

4Trimmed cross-entropy is the same as the cross-entropy metric except it
removes a fraction of the most extreme values before computing the average.
This omission suppresses the influence of extreme values on the result, which
can be very pronounced as there is no upper bound on the cross-entropy loss.
Everywhere in this paper, the most extreme 2.5% of values are removed from
both the smallest and largest cross-entropy values; in total, 5% of values are
removed.

5These lines technically display the upper and lower extremes of a 95%
confidence interval for the metric (computed from 5-fold cross-validation),
but these intervals are narrow enough that they appear to be a single line in
these figures.

The plots show a consistent pattern, wherein the (TED)n

method is often superior to the biased PN models. Moreover,
discrepancy between the two methods is most pronounced
when the proportion of positives among the unlabeled data
is larger. This makes intuitive sense, because the PN method
treats the unlabeled data as negatives, so when there are more
positives in the unlabeled set, there is not a consistent signal to
differentiate the two classes. Likewise, the (TED)n and biased
PN methods are most similar in performance when there is
a smaller proportion of positives among the unlabeled data.
However, even for small levels of label noise, the (TED)n

method displays superior Brier score and trimmed cross-
entropy values.

A general trend is that the (TED)n method produces models
that are very close to the benchmark performance obtained by
the traditional PN model without any label noise. The excep-
tion is the cross-entropy metric, which departs the benchmark
performance, even though its values remain lower than the
biased PN model. This is because the (TED)n procedure tends
to produce a small fraction of predictions which are very incor-
rect. After removing these extreme values, the cross-entropy
values are essentially indistinguishable from the benchmark
performance across all levels of label noise.

We use paired t-tests to test the null hypothesis that the
difference in the paired means is zero against the alternative
hypothesis that the distribution of (TED)n results has a mean
lower than that of the biased PN model. These results are
shown in table III. We carry out this test for each of the four
metrics (Brier score, cross-entropy, error rate, and trimmed
cross-entropy) for each percentage of positive samples treated
as unlabeled data. In all instances but one, the results are
statistically significant at the 5% level. The exception is that
the t-test reports no statistical difference in cross-entropy when
only 5% of the positives are moved to the unlabeled set. We
conclude that (TED)n provides an unambiguous benefit over
a biased PN model when applied to the DGA task.



Fig. 2. Test-set metrics for experiment 2.

B. Experiment 2: Malware Detection (simulating unlabeled
data)

Experiment 2 has the same design as Experiment 1, except
that it is applied to the EMBER dataset. We do not utilize
the EMBER dataset’s unlabeled data in this experiment; this
data is used in Experiment 3. Likewise, we use a similar
feedforward multi-layer perceptron with residual connections.
The input to the model is simply the EMBER feature vector;
as a preprocessing step, inputs to the model are centered to
have a mean of 0 and scaled to have a variance of 1. The
estimates of the mean and variance are computed solely from
the training data.

Figure 2 displays the results of Experiment 2. As be-
fore, the dashed horizontal lines indicate the “gold standard”
benchmark for the PN classifier trained with perfect label
information (no unlabeled data), and these lines display the
upper and lower 95% confidence intervals for the metric
(computed from 5-fold cross-validation).

Overall, the results for Experiment 2 show that increasing
the number of positives among the unlabeled data worsens
both the (TED)n model and biased PN model. Moreover, only
error rate of the (TED)n model is similar to the benchmark
values, and only when the mixture proportion is small. That
said, the (TED)n model still out-performs the biased PN model
in terms of Brier score, error rate and trimmed cross-entropy.

However, the cross-entropy results show that the (TED)n

model is consistently worse. We attribute this to the model
giving a very incorrect prediction to a small fraction of samples
in the (TED)n model, and the losses on these samples are large
enough to overwhelm the vast majority of instances which
have a lower loss. This is confirmed by the trimmed cross-
entropy results, which show that omitting these extremely large
values usually lowers the average loss for the (TED)n model
below that of the biased PN model. In other words, it’s not
true that the (TED)n model produces uniformly larger cross-
entropy losses than the biased PN model for all observations;
if it did, then the trimmed cross-entropy losses would show

that the biased PN model has both lower cross-entropy and
trimmed-cross entropy losses.

Additionally, the trend that (TED)n has lower trimmed
cross-entropy losses than the biased PN model is not universal.
For each mixture value of the positives among the unlabeled
data, there is one (TED)n cross-validation fold which has
a trimmed cross-entropy value comparable to the biased PN
model’s.

As with experiment 1, we use paired t-tests to compare
each of the four metrics (Brier score, cross-entropy, error rate,
and trimmed cross-entropy) for each percentage of positive
samples treated as unlabeled data. These results are shown in
table IV. For the EMBER dataset, the results are more mixed.
While both Brier score and trimmed cross-entropy are both
often statistically significant, they are only significant when
the proportion of relabeled positive instances is above a certain
threshold.

While these results provide some evidence that the (TED)n

procedure can, in some cases, out-perform the biased PN
procedure when applied to the EMBER dataset, the benefits are
only decisive when the proportion of positive instances among
the unlabeled data exceeds a certain size. In part, we attribute
this to the inherent difficulty of static analysis of PE files.
Because the classification task is more difficult, the model is
not a reliable indicator of classes, so the (TED)n procedure
is less effective when identifying and removing probable
positives from the training data. Aside from leaving some
positive instances among the training data, we also suspect that
erroneously removing benign examples (because the model
misclassifies them) from the unlabeled data can prevent the
model from learning about unusual benign instances.

C. Experiment 3: Malware Detection using Unlabeled Data

Experiment 3 compares the performance of the (TED)n

method and the biased PN model using the EMBER dataset’s
300,000 unlabeled data directly. We create a synthetic un-
labeled dataset by combining the unlabeled data with the
negative data. This adds some (unknown) number of positive



Fig. 3. Test-set metrics for experiment 3.

samples to the unlabeled data without reducing the number
of positive labels among the training data. Adding these
unlabeled samples to the negative set likewise increases the
total number of negatives available in the training data, as there
are presumably some number of negative examples among the
unlabeled data. This is a key difference between Experiment
3 and Experiments 1 and 2. In Experiments 1 and 2, each
positive sample moved into the unlabeled set decreased the
number of positive labels available to the model, but the
number of negatives remained the same. This experiment
uses the same model architecture and hyper-parameters as
Experiment 2.

Figure 3 shows the results of Experiment 3. Similarly to
Experiment 2, the (TED)n method shows lower Brier score
and trimmed cross-entropy. The error rates between the two
methods are comparable, although the (TED)n error rates are
more tightly clustered around a smaller median than the biased
PN model’s. According to Brier score and trimmed cross-
entropy, the (TED)n model is strongly preferred to the biased
PN model.

However, the cross-entropy values are consistently worse for
the (TED)n model, as they were in Experiment 2. We attribute
this finding to the same mechanism as before, in which the
the (TED)n model’s higher average values of cross-entropy are
driven by the presence of outliers which exert large influence
on the mean. The omission of extreme values reveals that,
for the vast majority of observations, the (TED)n model is
preferred.

We statistically test the differences in each of the four met-
rics; the t values are reported in table V. As with Experiment 2,
we find that the Brier score and trimmed cross-entropy show a
statistically significant difference, while the cross-entropy and
error rate do not. That said, the p-value of the error rate is
0.053, which is not significant at the 5% level.

VI. DISCUSSION

In all cases, the most pronounced improvements in model
quality occur when there is a larger proportion of positives

among the unlabeled data. This is intuitive – when the pro-
portion of labeling errors is smaller, the labeling errors will
have a smaller influence on what the model learns. Future work
should attempt to understand the prevalence of labeling errors
in different sources of threat intelligence (e.g. VirusTotal, Hy-
brid Analysis, Recorded Future). Also, discovering common
factors among the errors may allow a determination of root
cause or systematic omissions in how labels are assigned,
improving the quality of threat feeds overall.

The DGA results demonstrate that the (TED)n procedure
can be extremely effective. The results for the DGA task
demonstrate a nearly uniform improvement to models in the
PU setting. We attribute this success to the overall effec-
tiveness of the modeling strategy: 3-grams are tremendously
informative as a method for detecting randomized domain
name strings. Therefore, the (TED)n procedure is easily able
to remove positives from among the unlabeled data.

On the other hand, the mixed results of the (TED)n method
when applied to the textscember dataset suggests that the
effectiveness of (TED)n depends strongly on the underlying
model. In Anderson & Roth’s original publication, they report
a ROC AUC of 0.99911 for a gradient boosted tree model
trained on the EMBER data. Our benchmark model only obtains
ROC AUC 0.984 (the mean of 5-fold cross validation) and a
95% confidence interval of [0.9831, 0.9849]. So the model
that we used in this study is substantially worse than the
Anderson & Roth model, and using a model with comparable
effectiveness may alter these results.

We conjecture several potential causes our neural network
model’s poor performance.

• We use 5-fold cross-validation of the training data to
construct a validation set used for early stopping (in PN
models) and to estimate mixture proportion (for (TED)n

models). The 20% reduction in training data size could
impair model effectiveness.

• Anderson & Roth used gradient boosted decision trees.
Perhaps this finding is further evidence that multi-layer
perceptrons are less effective than gradient boosted deci-



sion trees on tabular data. (This is a widely-acknowledged
phenomenon; for example, [15]).

• The EMBER code is a few years out of date, so we were
forced to use newer library versions and kludge a few
lines of code. This may have changed the value of the
feature vectors in a way that impairs the model.

VII. CONCLUSION

These results demonstrate that the (TED)n procedure can
reduce the bias arising from building models with PU data.
These improvements in model quality are often statistically
significant and reduce the number of errors (false positives,
false negatives) that the model makes.

Future work should study the efficacy of the (TED)n pro-
cedure in conditions that are closer to the real-world setting
of industry practitioners. Both datasets are very small by the
standards of industry. An industrial-scale machine learning
model for computer security would use hundreds of millions to
billions of samples. The DGA dataset has 1.4 million samples
and the EMBER dataset has 1.1 million samples. Collecting
more data is often the shortest path to improving model quality,
and the (TED)n procedure removes one of the largest costs to
exploiting that data, access to benign labels.

While these methods have demonstrated some effectiveness
on small-scale computer security problems, the real challenge
is to assess the benefits and drawbacks of PU learning gener-
ally, and (TED)n specifically, in real-world industrial security
applications. Certainly, one component of that is increasing
the size of the datasets. A second component is accounting
for the sequential nature of the problem, where new objects
and labels arrive over time (possibly with labels arriving
some time after the sample itself). A third component is
identifying how and when adversarial actions to manipulate
classification decisions (e.g. data poisoning). A fourth is to
develop a deeper understanding of the failure modes for PU
learning, and how to remedy them. These improvements would
improve enhance computer security by enabling full use of the
enormous volumes of unlabeled data which characterize the
computer security industry.
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APPENDIX

A. Model Hyperparameters

All model training is done in PyTorch. Full code is available
in the Github repository. These model configurations were not
tuned because we desire a like-to-like comparison between
the Biased PN method and (TED)n, and to eliminate model
selection as a possible source of confounding in the results.
It’s plausible that better models exist.

Table I presents the DGA model’s configuration details.
Table II presents the EMBER model’s configuration details.



TABLE III
EXPERIMENT 1 (DGA) t STATISTICS

Percent
Positives
Relabeled

Brier score cross-entropy error rate trimmed
cross-entropy

0.05 -5.02 * -1.30 -3.78 * -34.81 *
0.10 -13.09 * -9.68 * -5.99 * -72.51 *
0.15 -35.81 * -14.54 * -14.55 * -81.93 *
0.20 -39.49 * -31.91 * -8.65 * -84.00 *
0.25 -27.47 * -32.42 * -5.01 * -49.06 *
0.30 -34.40 * -30.86 * -6.13 * -84.75 *
0.35 -80.23 * -38.79 * -8.74 * -325.36 *
0.40 -50.24 * -52.96 * -7.24 * -117.30 *
0.45 -82.76 * -62.60 * -13.48 * -140.61 *
0.50 -109.33 * -62.51 * -34.81 * -155.96 *
0.55 -183.04 * -54.92 * -88.50 * -237.70 *

B. Statistical Results

In each table, the t statistic has a star if it is significant at the
5% level. For all experiments, the t-statistic has 5

2 − 1 = 1.5
degrees of freedom.

The benchmarks and experiments are repeated using 5-fold
cross validation, where the hold-out set of the validation data
is used to compute BBE (for (TED)n) or the early-stopping
criterion (for PN training).

Experiment 3 only has 1 row because the number of
unlabeled is fixed by the EMBER dataset: the unlabeled set
is the combination of EMBER’s unlabeled data plus all of
EMBER’s negative data. (This experiment allows us to make
a comparison where all available positive labels are in the
positive set; the other experiments remove positive labels to
construct the unlabeled set.)

TABLE IV
EXPERIMENT 2 (EMBER) t STATISTICS

Percent
Positives
Relabeled

Brier score cross-entropy error rate trimmed
cross-entropy

0.05 4.94 20.37 -1.74 0.75
0.10 1.30 9.26 -2.42 * -6.96 *
0.15 -2.07 11.29 -0.76 -6.45 *
0.20 -4.31 * 3.62 -0.66 -2.72 *
0.25 -4.77 * 6.02 -0.50 -3.10 *
0.30 -6.08 * 6.62 -0.20 -3.63 *
0.35 -9.40 * 3.81 -1.24 -2.65 *
0.40 -10.91 * 2.86 -2.72 * -4.73 *
0.45 -11.52 * 3.54 -3.31 * -4.20 *
0.50 -32.72 * 8.47 -5.50 * -4.19 *
0.55 -74.99 * 5.39 -141.65 * -3.99 *

TABLE V
EXPERIMENT 3 (EMBER WITH UNLABELED DATA) t STATISTICS

Brier score cross-entropy error rate trimmed
cross-entropy

-7.53 * 3.36 -2.08 -9.33 *


